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ABSTRACT

We present a turbulent kinetic energy (TKE) closure scheme for the stably stratified atmosphere in which the

mixing lengths for momentum and heat are not parameterized in the samemanner. The key difference is that, while

themixing length for heat tends toward the stability independent mixing length for momentum in neutrally stratified

conditions, it tends toward one based on theBrunt–Väisälä time scale and square root of theTKE in the limit of large

stability. This enables a unique steady-state solution for TKE to be obtained, which we demonstrate would otherwise

be impossible if the mixing lengths were the same. Despite the model’s relative simplicity, it is shown to perform

reasonably well with observational data from the 1999 Cooperative Atmosphere–Surface Exchange Study

(CASES-99) using commonly employed model constants. Analyzing the scaling behavior of the nondimensional

velocity and potential temperature gradients, or of the stability (correction) functions, reveals that for large stability

the presentmodel scales in the samemanner as the first-order operational scheme of Viterbo et al. Alternatively, it

appears as a blend of two cases of the TKE closure scheme of Baas et al. Critically, because a unique steady-state

TKE can be obtained, the presentmodel avoids the nonphysical behavior identified in one of the cases ofBaas et al.
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1. Introduction

The stably stratified planetary boundary layer (SBL)

forms when the planetary surface is cooler than the air

above, frequently occurring at night or in polar regions.

The thermal stratification acts to suppress turbulent mo-

tions, due to the effort in drawing up heavier (cooler) fluid

from below and pulling down lighter (warmer) fluid from

above. The degree of thermal stratification is traditionally

classified as either weakly stable, associated withmoderate

winds and sustained turbulence, or very stable, associated

with weak winds and weak or intermittent turbulence. The

very stable case is also sensitive to other factors such as

gravity waves, longwave radiation, and local topography

(Nieuwstadt 1984; Mahrt 1999).

Despite the prevalence of the SBL and decades of re-

search, it remains particularly challenging for atmospheric

models to realistically represent (Viterbo et al. 1999;

Cuxart et al. 2006). Inaccurate representations of the

SBL affect the predicted momentum and heat fluxes at

the planetary surface, which can go on to have significant

large-scale influences in both weather and climate fore-

casting (Cuxart et al. 2006). Models therefore need to be

accurate and robust, both in terms of their operational

performance but also in their ability to faithfully repro-

duce fundamental physical processes and states.

In general, atmospheric turbulence parameterizations

use the gradient-flux approach, in which vertical turbu-

lent fluxes are related to the vertical gradient through an

eddy viscosity or diffusivity. For momentum (subscript

m) and heat (subscript h) these are
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where u and y are themean horizontal wind components,w

is the vertical wind, uy is the mean virtual potential tem-

perature, andprimes denotefluctuations. The eddyviscosity

Km and eddy diffusivity Kh must then be parameterized.

To aid the interpretation of common parameteriza-

tions for Km and Kh discussed below, we briefly intro-

duce the local-scaling theory of Nieuwstadt (1984). This

theory states that nondimensional quantities within the

stable boundary layer are only functions of z [ z/L,
where L is the local Obukhov length, defined as
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where u2

*5 (w0u02 1w0y0
2
)1/2 is the local friction velocity

and u*52w0u0y/u* is the local friction potential tem-

perature, both of which vary with height, and k 5 0.4

is the von Kármán constant. This local-scaling theory

represents a generalization of Monin–Obukhov similarity

theory (MOST), wherein MOST is only valid within the

near-ground surface layer and uses the surfaceObukhov

length L. Essentially, local-scaling theory states that the

nondimensional velocity and virtual potential tempera-

ture gradients fm,h are solely functions of z, where
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Defining the shear rate S2 5 (›u/›z)2 1 (›y/›z)2 and

Brunt–Väisälä (BV) frequency N2 5 (g/Qy)(›uy/›z)

enables these nondimensional gradient functions to be

related to the gradient and flux Richardson numbers as
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The turbulent Prandtl number is then given as
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First-order closure schemes are commonly used in op-

erational forecast models, wherein Km,h is parameterized

as Km,h 5 l2m,hSFm,h(Rig), where lm,h is the mixing length

for momentum or heat. The term Fm,h 5 1/(fmfm,h) is a

stability (correction) function that typically reduces with

Richardson number to account for the reduction of tur-

bulent motions with increasing stability. These first-order

schemes therefore only require solving the prognostic

equations for the mean variables. However, experimental

data for fm,h and therefore Fm,h show large scatter for

high stabilities (see, e.g., Högström 1988; Andreas 2002;

Beare et al. 2006), as well as suffering from self-correlation

issues (Hicks 1978; Baas et al. 2006). This leads to a wide

range of semiempirical forms of Fm,h suggested in the lit-

erature for first-order schemes. Some impose a critical

Richardson number of approximately 0.2 above which the

flow relaminarizes and turbulence ceases entirely (e.g.,

Businger et al. 1971; Dyer 1974). While this behavior

agrees with MOST in the surface layer, it is contrary to

observational data that shows turbulence persisting for

Rig . 1 (Galperin et al. 2007; Huang and Bou-Zeid 2013;

Mahrt 2014, and references therein).Moreover, the lack of

turbulent mixing can lead to runaway cooling and a de-

coupling between the near-surface state and that higher up

in the SBL (Derbyshire 1999). This motivated so-called

sharp forms for Fm,h, which enables turbulence to remain

nonnegligible forRig/‘ (e.g.,Kinget al. 2001).Operational

models often require even more mixing than these forms

of Fm,h provide to avoid the decoupling behavior, leading

to much larger Fm,h functions that are tuned based on

model performance (e.g., Louis et al. 1982; Beljaars and

Holtslag 1991; Viterbo et al. 1999).

So-called 1.5-order closure schemes are more ad-

vanced than first-order schemes as they also solve the

prognostic turbulent kinetic energy (TKE) equation.

This enables Km,h to be parameterized on TKE (e.g.,

Mellor and Yamada 1982; Teixeira and Cheinet 2004,

and others) and have been shown to perform well com-

pared to first-order schemes (Cuxart et al. 2006). While

popular in research and mesoscale models, these 1.5-

order schemes are not typically used in operational global

atmospheric models (Cuxart et al. 2006) and have not

received as much attention in terms of their high-level

scaling behavior (Baas et al. 2008). The parameterization

used is often of the form Km,h 5 lm,h

ffiffiffi
e

p
Fm,h, where e is

the TKE and a commonly employed mixing length is

lm,h } t
ffiffiffi
e

p
(Deardorff 1980; Cuxart et al. 2000, 2006; Baas

et al. 2008). Here, t is a time scale typically related to the

BV frequency in stably stratified flows (Deardorff 1980).

Critically, as will be demonstrated later, this commonly

employed mixing-length parameterization does not yield

a unique steady-state solution for TKE, when the TKE

equation consisting solely of shear production, buoyant

destruction and dissipation is considered. This form of the

stationary TKE equation is a physically realizable state

that has been observed in stably stratified homogeneous

sheared turbulence (Gerz et al. 1989; Holt et al. 1992),

is assumed in Monin–Obukhov similarity theory and

even explicitly exploited to achieve stationary conditions

in numerical simulations (Chung and Matheou 2012).
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Therefore, the inability to gracefully handle this fun-

damental steady-state behavior represents a trouble-

some deficiency in these 1.5-order schemes.

A similar, yet distinct, steady-state deficiency has

been identified by Baumert and Peters (2000) for the

2.5-order scheme of Mellor and Yamada (1982). This

involves, in part, solving prognostic equations for TKE

and additionally for a master mixing length l. Baumert

and Peters (2000) showed that this master mixing-length

prognostic equation is essentially the same as the TKE

dissipation rate equation, therefore referring to the

scheme as a k–« closure scheme following engineering

nomenclature. At any rate, the form of these two prog-

nostic equations in Mellor and Yamada (1982) yields no

steady-state solution for TKE, regardless ofmixing-length

parameterization. Baumert and Peters (2000) speculated

that this issue was a possible reason for ad hoc limiters

being applied to the mixing length in future 2.5-order

models (e.g., in Galperin et al. 1988). Alternatively, ad-

ditional terms may be added to the TKE and dissipation

equations to represent the transfer of turbulent energy to

internal gravity waves, which appears to avoid the issue

(Baumert and Peters 2004; Zeng et al. 2020). Rather than

adding complexity and computational cost by solving an

additional highly parameterized prognostic equation for

dissipation, we aim to retain the simplicity of the present

1.5-order closure scheme by only solving for TKE.

The outline of this paper is a follows. The TKE closure

model is developed in section 2, with the steady-state de-

ficiency demonstrated and then addressed in section 2b. A

brief validation of the model is provided in section 3, al-

though as we are more concerned with the broad proper-

ties and steady-state behavior of the model we do not

attempt to finely tune the model constants. The scaling

behavior of the model is then analyzed in section 4, similar

to the analysis by Baas et al. (2008) for their TKE closure

scheme, wherein comparisons are made to the first- and

1.5-order closure models in terms of fm,h and Fm,h.

Conclusions are then offered in section 5.

2. TKE closure model

a. Model formulation

The prognostic equation for TKE (e) assuming hori-

zontally homogeneous conditions can be written as

(Stull 1988)
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where the terms on the right-hand side correspond to

transportation (due to turbulence and pressure diffu-

sion), buoyant production, shear (or mechanical) pro-

duction, and dissipation, respectively.

The transport term is herein neglected, similar to other

SBL modeling studies (e.g., Ellison 1957; Zilitinkevich

et al. 2010; Wilson and Venayagamoorthy 2015), as it is

often found to be small in the SBL (Nieuwstadt 1984) and

typically has negligible impact in models when included

in the full TKE prognostic equation (Baas et al. 2008).

However, especially during strong intermittent turbulent

events, the transport term can become significant (Cuxart

et al. 2002) indicating this assumption may restrict us to

sustained turbulent conditions such as in weakly and

moderately stable cases. From (9), we note that for steady

stably stratified turbulence without the transport term,

the buoyant destruction cannot exceed the shear pro-

duction, so that Rif , 1 and should tend to a constant

value for large stability (Monin and Yaglom 1971, their

section 7.3; Zilitinkevich et al. 2010).

Following other SBL closure schemes (e.g., Deardorff

1980; Mellor and Yamada 1982; Cuxart et al. 2006;

Mauritsen et al. 2007; Baas et al. 2008), the dissipation is

parameterized using the Kolmogorov approach, with

«5C
«

e3/2

l
«

, (10)

where l« is the dissipation length scale andC« a constant.

Under neutrally stratified, isotropic, and homogeneous

turbulence, C« is often taken to be 0.7; however, these

assumptions of isotropy and homogeneity break down

with increasing stratification. The value of C« is there-

fore often reduced as a result (Cuxart et al. 2006); here

we use C« 5 0.16 from Teixeira and Cheinet (2004),

which is similar to the stable-limit value of 0.19 in

Deardorff (1980). As with neglecting the TKE transport

term above, this dissipation parameterization may not

be suitable for very stable and intermittent cases when

the turbulence may be anisotropic and inhomogeneous.

Following the eddy-diffusivity approach in (1) and (2),

we parameterize the momentum eddy viscosity and heat

eddy diffusivity on TKE, with

K
m
5C

m
l
m

ffiffiffi
e

p
, (11)

K
h
5C

h
l
h

ffiffiffi
e

p
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thus requiring the mixing lengths for momentum and

heat, lm and lh, to be determined. The coefficients Cm

and Ch are taken to be constants, with Cm 5 0.1 (from

the large eddy simulation TKE closure scheme of

Deardorff 1980) and Ch 5Cm/0.75. This will be shown
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to yield a turbulent Prandtl number in neutrally strati-

fied conditions of 0.75. Finally, under steady-state con-

ditions and with the assumptions made above, (9) then

becomes

e5
l
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C
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C
m
l
m
S2

�
12

C
h

C
m

l
h

l
m

Ri
g

�
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b. Mixing-length definitions

For the mixing-length parameterization, a common

approach (e.g., Deardorff 1980; Lenderink and Holtslag

2004; Cuxart et al. 2006; Baas et al. 2008) is to put

lm,h,« 5 t
ffiffiffi
e

p
, where t is some time scale typically related

to the inverse of the BV frequency (Deardorff 1980).

However, this is problematic as we see that (13) then

results in

e5 t2e
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12
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C
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which does not yield a unique solution for TKE. This

could readily result in atmospheric models predicting

the unbounded increase of TKE with time, as was ob-

served in Baas et al. (2008) for particular model con-

stants. We therefore speculate that this issue perhaps

contributes to the numerical instabilities often associ-

ated with 1.5-order closure schemes (Lenderink et al.

2004). Furthermore, like the similar steady-state issue

identified with 2.5-order models in Baumert and Peters

(2004), the nonuniqueness may be the reason that ad-

ditional ad hoc limiters on mixing lengths, or even the

TKE, are used to artificially constrain 1.5-order models.

The nonuniqueness of (14) emerges due to the

identical mixing-length parameterization employed.

To resolve this, we instead use different mixing-length

formulations for momentum and heat, a similar ap-

proach as done in Teixeira et al. (2004) for unstably

stratified flows. Given that the mixing length is a highly

conceptual parameter representing the length scale of

turbulent mixing, then there is no physical reason that the

two must be parameterized in the same manner. We also

aim to avoid the use of any ad hoc limiters or stability

correction functions on the mixing length or on TKE.

For momentum we simply use the formulation of

Blackadar (1962),

1

l
m

5
1

kz
1

1

l
‘

, (15)

which scales as kz close to the surface and where l‘ is the

asymptotic turbulent mixing length far from the surface.

Typically l‘ is approximately 40 to 200m (Cuxart et al.

2006); however, studies using LES (Huang et al. 2013)

and field observations (Kim and Mahrt 1992; Sun 2011)

have suggested smaller values of approximately 5 to

15m for stably stratified flows. Here we use l‘ 5 7m

following Huang et al. (2013). Note that while there is

no dependence on stability, unlike some other mo-

mentum mixing lengths formulations for first-order

schemes (Delage 1974; Huang et al. 2013), in 1.5-

order closure schemes the eddy viscosity will be indi-

rectly affected by stability due to its dependence on e

through (11).

To distinguish the parameterization for the mixing

length for heat from that of momentum, we can take

advantage of the observed increase in the turbulent

Prandtl number, Km/Kh, with stability (Ellison 1957;

Monin and Yaglom 1971; Kim and Mahrt 1992;

Sukoriansky et al. 2006; Venayagamoorthy and Stretch

2010; Huang and Bou-Zeid 2013; Li 2019). This increase

is often attributed to momentum being mixed more

efficiently than heat due to gravity waves (Lenderink

and Holtslag 2004; Anderson 2009). Ideally the gravity

waves and turbulence would be parameterized sepa-

rately, where attempts have been made to do so with

higher-order closure schemes (Zilitinkevich 2002) or

by adding additional source or sink terms to the TKE

and dissipation equations in k–« schemes (Baumert and

Peters 2004; Zeng et al. 2020). However, this is chal-

lenging due to the difficulty in even distinguishing the

two motions of turbulence and gravity waves apart

from measurement data (Stewart 1969; Jacobitz et al.

2005). Therefore, in the present 1.5-order closure

scheme we will simply require the turbulent Prandtl

number to become very large for extremely stable

situations (Rig / ‘), to approximate this influence of

gravity waves (Lenderink and Holtslag 2004). Note

that, by requiring an unbounded increase in Pr with no

critical Rig, this scheme will not obey the stable-limit

local-scaling theory of Nieuwstadt (1984), which is

based on the z-less scaling arguments of (Wyngaard

and Coté 1972). Meanwhile, the mixing length for heat

under neutrally stratified conditions (Rig / 0) should

converge toward that of momentum.

The two limiting behaviors above can be achieved with

1

l
h

5
1

t
ffiffiffi
e

p 1
1

l
m

, (16)

or equivalently

l
h
5

l
m
t
ffiffiffi
e

p

ł
m
1 t

ffiffiffi
e

p , (17)

where t 5 a/N is a time scale based on the BV frequency

and constanta5 0.76 (Deardorff 1980;Moeng 1984).We
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see that, for extremely stable situations as t
ffiffiffi
e

p
/lm / 0,

the mixing length for heat lh / t
ffiffiffi
e

p
and the turbulent

Prandtl numberKm/Kh/‘. Meanwhile, under neutrally

stratified conditions as t
ffiffiffi
e

p
/lm /‘, we have lh / lm and

Km/Kh / Cm/Ch 5 0.75, as required.

Finally, we set the dissipation mixing length l« 5 mlh
with C«/m 5 0.08, a value similar to that used in other

studies of the SBL (e.g., Cuxart et al. 2000; Lenderink

and Holtslag 2004; Baas et al. 2008). Conventionally the

dissipationmixing length is based on that of momentum,

albeit in schemes where there is no distinction between

lm and lh such that l« } t
ffiffiffi
e

p
. Here, we use the mixing

length for heat as it retains this dependency on TKE in

the stable limit and is therefore similar to these previous

schemes. Using a blend of lm and lh to define the dissi-

pation mixing length [e.g., Eq. (8) of Teixeira et al.

(2004)] does not significantly change the results or

conclusions of the present study, presumably because lh
(and hence l«) already has some dependency on lm.

Under the abovemixing-length formulation, (13) then

becomes

e5
m

C
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C
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l
m
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m
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e
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l
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l
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, (18)

and can now be numerically solved for the steady-state

turbulent kinetic energy.

3. Model validation with CASES-99

Before analyzing the scaling properties of the model,

we provide a short validation that the model agrees

reasonably well with field experiments. For this pur-

pose, we use the 1999 Cooperative Atmosphere–

Surface Exchange Study (CASES-99; Poulos et al.

2002), a field campaign conducted in southeastern

Kansas (37.658N, 96.748W; 440m MSL) in October

1999. Both weakly and very stable conditions were

observed, along with other SBL events such as inter-

nal gravity waves. A sixth-order polynomial fit to the

60-m main tower wind speed and temperature data is

used to determine velocity and potential temperature

gradients (Sorbjan and Grachev 2010). The 5-min-

averaged measurements are transformed to 1-h aver-

ages and bin-averaged for Rig, as in Wilson and

Venayagamoorthy (2015).

Figure 1 shows the mixing lengths for momentum and

heat for the CASES-99 data at z 5 50m. Here, we as-

sume that the shear production of TKE is equal toKmS
2

and use (2) to compute Km and Kh, respectively. The

mixing lengths lm,h are then obtained assuming the TKE

eddy diffusivity parameterization given by (11) and (12).

The Rig-bin averaged mixing lengths from CASES-99

are shown in red, while the blue symbols show the

mixing lengths we would obtain using the present for-

mulation given by (15) and (17), where in (17) we use the

TKE from CASES-99. We see that lm (Fig. 1a) is not

particularly sensitive to Rig, thus justifying the use of a

stability independent mixing length for momentum,

(15). As mentioned in section 2b, this is because within

1.5-order closure schemes the eddy viscosity remains

dependent on stability through e in (11), even if lm is

stability independent. This would not be the case for

first-order models that therefore often incorporate the

stability correction function Fm, or mixing lengths de-

fined to be functions of Rig (e.g., Huang et al. 2013).

The mixing length for heat (Fig. 1b), meanwhile,

shows a much stronger dependence on Rig. This is

somewhat captured by the present lh formulation [(17),

blue line] and could be improved by reducing a in the

FIG. 1. (a)Momentum and (b) heatmixing lengths at z5 50m, as

a function of the gradient Richardson number, Rig. Black symbols

are 1-h-averaged CASES-99 data; red stars are the corresponding

Rig-bin-averaged data, where we have assumed (1) and (2) and (11)

and (12) to determine lm,h. Gray shading indicates 61 standard

deviation of the Rig-bin averaged data. Blue circles are the mixing

lengths of (15) and (17), using the TKE from CASES-99.
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time scale t 5 a/N and adjusting other constants ac-

cordingly. As we are more interested in the broad

properties of the present parameterization, we will

continue to use the present model constants that are

commonly used in the literature and not attempt to

finely tune the constants.

Figure 2a shows the turbulent Prandtl number. The

CASES-99 data show a clear increase with Rig, which is

again reasonably captured by the present formulation.

These are in agreement with the Pr formulation pro-

posed by Venayagamoorthy and Stretch (2010, gray

dashed line). Finally, Fig. 2b shows the TKE from the

CASES-99 data along with that obtained from solving

the present parameterized steady-state TKE equation of

(18). The lapse rate in the model is fixed to the CASES-

99 average at z 5 50m of du/dz 5 40Kkm21, such that

the time scale t ’ 20.1 s, and the shear rate (and thus

Rig) is varied. The resulting TKE predicted by the

model shows good agreement with the CASES-99 data

and correctly reduces with Rig.

This analysis can be repeated at different heights

where data are available from the CASES-99 main

tower and leads to similar results (not shown). Ultimately,

the above validation demonstrates that the present TKE

model with separately parameterized mixing lengths for

momentum and heat captures the essential behavior of the

CASES-99 field data. This is despite the model being rel-

atively simplistic, in which only shear production, buoyant

destruction and dissipation of the TKE assuming steady-

state conditions are considered and standard model con-

stants are employed.

4. Scaling behavior

We now look at the scaling behavior of the model in

terms of the nondimensional gradients fm,h in (4) and

(5), and stability functions, Fm,h 5 1/(fmfm,h), that are

often employed in first-order closure schemes. As the pa-

rameterized steady-state TKE equation without transport

term (18) is independent of z we must determine an ap-

propriate vertical length scale. This is achieved by noting

that for neutrally stratified surface layer flows fm(z /
0) 5 1, which therefore prescribes z when k 5 0.4 is al-

ready specified (Chung andMatheou 2012). This choice of

z simply guarantees fm(z 5 0) 5 Fm(Rig 5 0) 5 1.

Figure 3 shows the nondimensional velocity gradient

fm and potential temperature gradient fh for the

present model. This is accompanied by a selection of

first-order closure models often encountered in the

literature, introduced in section 1, as well as cases C

andD of the 1.5-order TKE closure model of Baas et al.

(2008). In Baas et al. (2008), the problematic lm,h } t
ffiffiffi
e

p
mixing-length formulation was used where case C used

original operational model constants and had a critical

Rig of 1.3, above which turbulence ceased. Case D had

no critical Rig and used model constants that, for their

scheme, yielded no solution for TKE in the stable limit.

For momentum (Fig. 3a), the present model appears

similar to case C of the TKE closure scheme of Baas et al.

(2008). In the limit of large stability, when z / ‘ and

lh / t
ffiffiffi
e

p
, it can be shown that the present model tends

toward fm/z 5 Bm where Bm 5 1 1 (C«/m)/(Cha
2) ’

2.04 is just a function of model constants. From (7), this

therefore corresponds to a critical flux Richardson

number Rif,crit 5 1/Bm ’ 0.49, similar to the critical

value of 0.55 for Case C of Baas et al. (2008). Note that,

for positive model constants, the present model guar-

antees that Rif,crit, 1, as required. Moreover, since the

model has a critical Rif,crit but also lh defined such that

the turbulent Prandtl number Km/Kh / ‘ in the stable

limit, then from (8) there can be no critical gradient

FIG. 2. (a) Turbulent Prandtl number, Km/Kh, and (b) turbulent

kinetic energy e at z 5 50m, as a function of the gradient

Richardson number, Rig. Symbols are as in Fig. 1. The gray dotted

line in (a) is the prediction of Venayagamoorthy and Stretch

(2010); the blue solid line in (b) comes from solving (18).
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Richardson number. The present model limiting be-

havior for fm is less than the model of Businger et al.

(1971) and Dyer (1974), which obeys MOST and where

in the stable limit fm/z 5 4.7. Moreover, it is greater

than the high-mixing operational schemes of Beljaars

and Holtslag (1991) and Viterbo et al. (1999), where in

the stable limit fm/z 5 1 and approaches the Rif . 1

limiting regime shown by the gray triangular area.

The nondimensional temperature gradientfh (Fig. 3b),

meanwhile, shows a very sharp increase with stability for

the present model. This is even more rapid than the non-

physical CaseD of Baas et al. (2008); however, the present

scheme with separate momentum and heat mixing-length

formulations avoids the nonphysical behavior of that par-

ticular case. Due to the present model having a critical flux

Richardson number but no critical gradient Richardson

number, then we see from (6) that in the stable limit

as z / ‘, fh/z5 (fm/z)
2Rig 5 (1/Ri2f ,crit)Rig and thus

increases with Rig. From the parameterized TKE

Eq. (18), the TKE in the stable limit (when lh / t
ffiffiffi
e

p
)

is estable 5B2
e � l2mS2/Rig with Be 5 Cm/(ChBma) ’ 0.48.

Using (3), (11), (12), we can then obtain Rig 5 (z/Bz)
4,

where Bz 5 (Cha/Bm)
1/2 kz/(Cmlm). Ultimately this shows

that fh/z5 z4/(Ri2f ,critB
4
z) in the stable limit, wherein the

large exponent of 4 explains the rapid increase offhwith z.

The stability functions for momentum and heat are

shown in Fig. 4. Both of these functions for the present

model are much larger than those of the other schemes,

which suggests significantly enhanced mixing. However,

this interpretation of enhanced mixing comes from the

fact that, in first-order models, Fm,h directly modifies

Km,h as stability correction functions. For the present

closure scheme, Fm,h is determined diagnostically from

(4) and (5) using the TKE derived from solving (18),

which only considers shear production, buoyant de-

struction, and dissipation of TKE. No additional lim-

iters or correction functions are required in specifying

the mixing lengths, eddy viscosity or eddy diffusivity.

These differences may explain why the steady-state

TKE determined by the present model compare rea-

sonably well with observations (Fig. 2b), despite Fm

suggesting substantial mixing.

At large stability, the present model stability func-

tions become Fm 5 (Rif ,crit/Bz)
2Ri21/2

g ’ 0:4331Ri21/2
g and

Fh 5 (Ri3f ,c r i t/B
2
z)Ri23/2

g ’ 0:21Ri23/2
g . This is the same

scaling, although with different model constants, as the

large stability limit of Viterbo et al. (1999), where

Fm 5 0:1Ri21/2
g and Fh 5 0:0667Ri23/2

g . These functions

are based on the Louis–Tiedke–Geleyn (LTG) scheme

(Louis et al. 1982), which are ultimately derived from

the work of Ellison (1957). As in the current work,

Ellison (1957) assumed that the turbulent Prandtl

number became unbounded in the stable limit and

derived an expression for Pr from the steady-state TKE

equation without the transport term (see also Monin

and Yaglom 1971, their section 7.4). This suggests that

the high-mixing LTG functions are not entirely non-

physical as suggested by some authors (e.g., Baas et al.

2008), but are simply a consequence of assuming that

the eddy diffusivity becomes negligible relative to the

eddy viscosity in the stable limit.

5. Conclusions

TKE closure schemes are a promising avenue for

modeling the stably stratified planetary boundary

layer; however, they have not been as closely analyzed

as the more common first-order approaches. For TKE

closure schemes, a commonly employed mixing-length

FIG. 3. Nondimensional (a) velocity gradient fm in (4) and

(b) potential temperature gradient fh in (5) against nondimen-

sional vertical position z/L. Line styles: blue, present model; gray

plus, Businger et al. (1971) and Dyer (1974); orange cross, King

et al. (2001); purple squares, Beljaars and Holtslag (1991); green

diamonds, Viterbo et al. (1999); and black up and down triangles,

cases C and D of Baas et al. (2008). Gray triangular area in

(a) shows the nonphysical Rif . 1 regime.
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parameterization involves using a time scale and the

square root of the TKE, lm,h,« 5 t
ffiffiffi
e

p
(Deardorff 1980).

We show that this common formulation yields no unique

solution for TKE when considering the steady-state

TKE equation consisting of shear production, buoyant

destruction, and dissipation. This deficiency may result

in the TKE becoming numerically unstable during

steady-state conditions, and may explain the use of

artificial, ad hoc limiters to constrain the model.

To avoid this steady-state deficiency, the present TKE

closure scheme uses separate mixing lengths for mo-

mentum and heat, a similar approach as done in Teixeira

et al. (2004) for unstably stratified flows. We emphasize

that the present formulation does not actually introduce

any new mixing-length parameterizations that have

not individually been used in the literature; rather it

merges previous parameterizations into a scheme that

can faithfully account for steady-state conditions.

We assume that the mixing length for heat tends

toward the (stability independent) mixing length for

momentum under neutrally stratified conditions, and

that the turbulent Prandtl number increases with the

gradient Richardson number at large stability. The in-

crease of Pr somewhat approximates the influence of

gravity waves, which mix momentum more efficiently

than heat (Lenderink and Holtslag 2004; Anderson

2009). These two conditions are satisfied with (17) and

results in a scheme with no critical Rig. The model

enables a unique solution for TKE to be obtained from

the steady-state TKE prognostic equation without the

transport term in (18), as required. The assumptions,

notably that the turbulence is sustained, isotropic and

homogeneous and neglecting intermittent effects, ap-

pear limiting at first. However, comparisons were made

with data from the CASES-99 field campaign, which

observed both weakly and very stable conditions as well

as SBL phenomena such as internal gravity waves

(Poulos et al. 2002), and reasonable agreement was

found with the model (Figs. 1 and 2).

The present model exhibits some similarities to the

TKE closure scheme of Baas et al. (2008), which used

the deficient lm,h 5 t
ffiffiffi
e

p
formulation. Figure 3 shows that

the present fm is similar to their Case C, which was

based on model constants using operational values,

while the nondimensional potential temperature gradi-

ent fh increases very rapidly, similar to their Case D.

While Case D in Baas et al. (2008) was nonphysical in

that there was no unique TKE solution in the stable

limit, the present formulation with separately parame-

terized mixing lengths effectively blends their two cases

together and avoids this nonphysical behavior.

Finally, the stability functions Fm,h of the present

scheme are shown to scale in the same manner as the

first-order closure Louis–Tiedke–Geleyn (LTG) func-

tions of Louis et al. (1982) [or the revised form in

Viterbo et al. (1999)] in the stable limit. This is due to the

present scheme and the LTG functions, based on the

work of Ellison (1957), both of which assume an un-

bounded turbulent Prandtl number in the limit of large

stability with no critical Rig. As noted with regards to

Case D in Baas et al. (2008), this assumption therefore

does not obey the stable limit behavior of the local-

scaling theory (Nieuwstadt 1984), which assumes a

critical Rig (z-less scaling). However, this suggests that

the view that the LTG functions artificially enhance

mixing and are nonphysical is instead a consequence of

the relaxation of the assumption from local-scaling

theory that Rig must remain finite.

The steady-state results discussed in this paper suggest

that a similar mixing-length approach would also pro-

duce more realistic results for the stable boundary layer

in the context of utilizing a fully prognostic TKE equa-

tion to determine the eddy diffusivity and eddy viscosity

coefficients.

FIG. 4. (a) Momentum and (b) heat stability functions against the

gradient Richardson number. Line styles are as in Fig. 3.
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